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ABSTRACT

Compound and generalized distributions have been discussed in

the framework of contagious distributions. In particular, it is pointed out

that the Negative Binomial may be regarded as a compound Poisson (using a

Gamma variable as the compounder) or as a generalized Poisson (using a

Logarithmic random variable as the generalizer). As an example of true

contagion the Negative Binomial is also a limit of the distribution obtained

through Polya's urn model.

A formal relation between compound and generalized distributions

is developed, utilizing a symbolic notation. Some natural extensions of

the Negative Binomial through repeated compounding with a Gamma

distribution or through repeated generalizing with a Logarithmic distribution

are indicated.

Some wide generalizations of Neyman's class of contagious

distributions are presented, and examination of their shape reveals

that some simpler families with fewer parameters, such as the Poisson

v Pascal offer interesting possibilities for fitting data. An attractive

property of the Poisson v Pascal is that it contains the Negative

Binomial, Neyman Type A, and Poisson as special limiting cases.



SOME FAMILIES OF COMPOUND AND GENERALIZED DISTRIBUTIONS

John Gurland

1. Introduction

Compound and generalized distributions arise in the study of so-called

contagious distributions. Feller (1943) described two types of contagion. One

of these types, "true contagion", pertains to situations in which each "favorable"

event increases (or decreases) the probability of succeeding favorable events.

The other of these types, "apparent contagion", reflects a sort of heterogeneity

of the population. Still a further type of contagion known as a "model of random

colonies" also proves useful in the study of many biological phenomena. This

type of contagion is described by means of generalized distributions.

The main purpose of this paper is an expository presentation of some

results on contagious distributions in which the relation between a certain class

of compound and of generalized distributions is utilized. Some general families

of contagious distributions are described and their shape characteristics indicated.

Some consideration is also given as to the selection of an appropriate family of

distributions when one is attempting to fit data on the basis of an underlying

model of the type described here.

Sponsored by the Mathematics Research Center, U. S. Army, Madison, Wisconsin,
under Contract No. DA-1l-0ZZ-ORD-2059.
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2. Contagion

2. 1 Apparent contagion

This type of contagion is the result of a mixture of distributions arising

through the distribution of a parameter in an initial distribution. A well known

example is the result of applying a Gamma distribution to the mean of a Poisson

distribution. (cf. Greenwood and Yule ( 1920)). Specifically, let the mean of

the initial distribution (the Poisson, in this example) be X . The probability

generating function (p. g. f. ) of this Poisson distribution is

X(z-l)()X . (1)

By the p. g. f. g(z) of a random variable X we mean Ez , where

E denotes expectation. When the values which X may assume (with non-zero

probability) are non-negative integers then the p. g. f. expressed as a power

series yields the probabilities as the coefficients in the series. Thus

00

g(z) = 0 zrp{X=r} (2)
r=0

On applying a Gamma distribution with probability density
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p(X) - e X a >O0 (3)r ( > 0

to the mean X in the above initial Poisson distribution we obtain for the

p. g. f. of the resulting distribution

°° e-ax Pe (z-l) d%-1 -fe> p,'I~ e(ldX = (1----) .(4

0

1

If we write p =- ; q =l+p; p =k, thep. g.f. in (4) becomes

(q-pz)-k (5)

which is a well known form for the p. g. f. of a Negative Binomial distribution.

This is an example of apparent contagion, and on the basis of this model the

Negative Binomial may be regarded as a compound Poisson distribution. A

formal definition of a compound distribution will be given in section 3.

2. 2 True contagion

The following urn scheme due to Polya (1930) affords an example of

true contagion and leads in a relatively simple way to the Negative Binomial

distribution. Let an urn contain Np white and Nq black balls, where

p + q = 1. Suppose n successive drawings of a ball are made according to the
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following rule: If a white ball is drawn it is replaced and N6 additional

white balls are put in the urn. Likewise, if a black ball is drawn it is

replaced and N6 additional black balls are put in the urn.

Polya (op. cit.) shows that when p -- 0, 6 - 0, n - oo such that

np and n5 are held constant the distribution of the number of white balls

approaches that of a Negative Binomial random variable. It is a fact of

considerable interest (cf. Arbous and Kerrich ( 1951)'; Fitzpatrick (1958)) that

the Negative Binomial may be regarded as arising through apparent contagion

or through true contagion.

2. 3 Model of random colonies

This model has wide application in biological as well as other phenomena.

An example illustrating the mechanism of this model is afforded by the distribution

of insects over a field. Suppose the insects are larvae which hatched from egg-

masses. These egg-masses may be regarded as cluster centers or "random

colonies". Actually two underlying distributions are involved in the final

distribution of the larvae. First, there is the distribution of the egg-masses

over the field; second, there is the distribution of larvae which leave an

egg-mass and arrive at a particular location selected at random.

Specifically, let the distribution of egg-masses be Poisson with p. g. f.

91 (z-l) = P0 + Pz+Pz + + (6)

-X rwhere P = e X /r! is the probability that exactly r egg-masses arer
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represented on a randomly selected location. Suppose, further, that the

number of larvae from an egg-mass which reach the location is given by a

Logarithmic distribution with p. g. f.

p> 0

9g2 (z) = 1-a log(q-pz) a >0 (7)

q =+ p

Now, the number of larvae at the random location may be due to

0, 1, 2, ... egg-masses. Consequently, the over-all distribution of larvae

will have p.g.f.

Go

g(z) = P r{g g2( z)}r = gI{g 2(z) (8)
r=0

which, in the present instance, reduces to

-a log(q-pz)--a(

g(z) =e -= (g-pz)-a (9)

the p. g. f. of a Negative Binomial distribution. On the basis of this model

the Negative Binomial may be regarded as a generalized Poisson distribution

This Logarithmic distribution is more general than that considered by Fisher,
Corbett, and Williams (1943) or by Jones, Mollison, and Quenouille (1948) in
that it permits a positive probability for the occurrence of zero counts. When
1 - a log q = 0 it reduces to the more specialized Logarithmic distribution.
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(cf. Quenouille (1949)). A formal relation between certain families of

compound and generalized distributions will be considered in section 3.

3. A formal relation between some compound and generalized distributions.

For convenience we employ the definitions and notation employed by

Gurland (1957).

Definition 1 Compound distribution

Let the random variable X have the distribution function F (x 10)

for a given value of the variable X1 and of the parameter 0. Suppose now

that 0 is regarded as a random variable X2 , say, with distribution function

F2. Denote by X1 A X2 the random variable with distribution function F

given by

F(x1 ) = fFI(xl1 cx 2 )dF 2 (x 2 ) (10)
D

for each value of X, where D is the domain of F . Here c is a constant

which is arbitrary. (Values of c for which (10) is not a distribution function

are excluded). The random variable XI A X2 (uniquely defined here apart from

the constant c) is called a compound X variable with respect to the

"compounder" X 2

In the example of 2. 1, X1 is a Poisson random variable with mean X

and X 2 is a Gamma random variable with probability density given by (3).
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The constant c was taken as unity, but in this example there is no loss of

generality because (4) would have become, with c in place of unity,

[I- C (z - 1); and we would then define p =c/a instead of I/a.
a

Definition 2 Equivalent distributions

Suppose the random variables X1 , X2 have distribution functions

Fl(x/a) , F (x/P) respectively', a and/or P may be multi-dimensional.

If for each a there exists some P and for each P there exists some a

such that FI(x/a) = F 2(x/P) whatever be x, the random variables X,

X are said to be equivalent, and we write XI '-X

It is often convenient to represent a random variable by the name of

its corresponding distribution. Thus, in the case of the compound Poisson

considered in section 2. 1 we might write

Poisson A Gamma - Negative Binomial (10)

It may happen as in several cases considered below that the initial

distribution being compounded may have several parameters but only a

particular one of them is regarded as a random variable. In such cases

the notation X1 A X 2 as employed in (10) might become ambiguous;

for these cases the notation will be modified as required. In the example

above represented by (10) there is no ambiguity since the Poisson has only

one parameter, namely, the mean.
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Definition 3 Generalized distribution

Let the random variables X1, XZ. have p.g. f. s gl(z), g2 (z)

respectively. Denote by X1 v X 2 the random variable with p. g. f.

g1( g2(gz)). Then X1 v X 2 is called a generalized X variable with

respect to the "generalizer" X

Theorem

e
Let X be a random variable with p. g.f. [h(z)] where 0 is a1

given parameter. Suppose now 0 is regarded as a random variable X '

22say, with distribution function F 2 and p. g. f. g" Then, whatever be

X 2

X A X? ~X v X (11)
1 2 2 1

assuming the p. g. f. of these random variables exists.

Proof

The proof follows immediately from the definition of compound and

generalized distributions. In fact, the p. g. f. of XI A X 2 is given by

f [h(z)]cxdF2 (x)
D

while that of X2 v X1 is given by
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9 {g P f [h(z)] dF 2 (x)
D

These are, of course, equal, when c = 0.

It is interesting to note the role of the constant c intruduced in

the definition of compound random variable.

As an example of applying the above theorem let X and X both

be Poisson random variables. Then

Poisson A Poisson Poisson v Poisson . (12)

This distribution is called the Neyman Type A (cf. Neyman, 1939), and may

be interpreted both as a compound Poisson and as a generalized Poisson, as

was pointed out by Feller (1943).

It should be noted both in the theorem and in the above definitions that

the random variables X1 , X2 need not be discrete. For XI the p.g.f. is

xI
Ez and likewise, of course, for X2 The following example illustrates the

point.

PoissonAGamma -Gamma v Poisson . (13)

To verify (.3) we note that Poisson A Gamma is equivalent to a

Negative Binomial. It suffices, therefore, to show that Gamma v Poisson

is also equivalent to a Negative Binomial. Now the moment generating

function EetX of the Gamma random variable X with probability density
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given by (3) is

( .)- (14)

Replacing et by z yields the p. g. f.

0 -(15)

If the p. g. f. eX z-) of the Poisson is substituted for z in (15) we obtain

which corresponds to a Negative Binomial as required.

Let us next consider examples of compounding a distribution which

involves more than one parameter. Take, for instance, a Negative Binomial

-kwith p. g. f. ( q - pz) . For brevity we shall refer to this distribution as

Pascal (k, p). The above theorem and relation ( 11) apply if the index

parameter k is regarded as the random variable X . Taking X to be

a Poisson and a Gamma random variable respectively yields the following

relations

Although the term "Pascal distribution" commonly refers to the particular
case of a Negative Binomial distribution with index parameter k an integer,
we employ the same terminology for the Negative Binomial for convenience
in writing. (cf. Gurland (1959) Katti and Gurland (1962))
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Pascal (k, p) A Poisson ~ Poisson v Pascal (16)

Pascal (k, p) A Gamma ~ Gamma v Pascal (17)

It should be noted the letter k is inserted below the symbol "A"

to obviate the possible ambiguity mentioned earlier.

The examples in sections 2. 1 and 2. 3 exhibiting the Pascal

distribution as a compound Poisson and generalized Poisson, respectively,

can be expressed symbolically as

Poisson A Gamma Poisson v Logarithmic (18)

It was shown by Gurland (1957) that this relation can be extended.

Thus,

(Poisson A Gamma) A Gamma (Poisson v Logarithmic) v Logarithmic (19)

that is

Pascal A Gamma "• Pascal v Logarithmic . (20)

This extension can, in fact, be carried out any number of times.

The next step, for example, would be

(Pascal A Gamma) A Gamma (Pascal v Logarithmic) v Logarithmic (21)

and so on.
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4. A generalization of Neyman's class of contagious distributions

SLet us consider the example in section 2. 3 in more detail and in

a modified form. As before, let the probability that exactly r egg-masses

are represented on a randomly selected location be given by a Poisson

distribution

;• -xS1 r
P =e X Ir" (22)i r 1 "

Before we were interested merely in the number of larvae which move

from an egg-mass to a particular location. In the present instance we are

also interested in the number of survivors in an egg-mass, that is, the

number of larvae that hatch out. Suppose the number of survivors in an

egg-mass is a Poisson random variable with mean X , say. That is,

the probability that there are exactly n survivors in an egg-mass is

given by

e X n!/n (23)

Suppose that in a particular egg-mass there are n survivors. The

probability that exactly s of them will be found at a particular location

will be assumed to be

)pS(l p)n- (24)
5
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which corresponds to a Binomial distribution with parameters n, p.

A straightforward application of the notions of compound andIgeneralized distributions discussed in sections 2 and 3 yields as

the p. g. f. of the distribution of larvae

Xl[g(z) -1]
e (25)

where g( z) is the p. g. f. of the Binomial distribution in (24) compounded

with the Poisson distribution in (23). A simple argument utilizing the relation

Binomial (n, p) A Poisson Poisson v Binomial
n

shows that

g(z) =eX p(z-1) (26)

which corresponds to a Poisson. Consequently, the resulting distribution

given by (25) is a Neyman Type A.

As a first step in extending this family of distributions suppose the

parameter p in (24) may (more realistically) be regarded as a random

variable, following, say, a Beta distribution with probability density

1 a-I -x) 0 < X < 1 (27)
B(a,>0)

a > 0 > 0
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On compounding the distribution in (26) with this Beta distribution

we obtain the p. g. f. g1 (z) , say, where

(z 1 f e Xx(z-l)x a-1_ (lx). dx = IFa a + X X(z-.)1 (28)
IIg~)=B(a,l p) feX ~ 1 I

Z) 0

and where F is the well-known confluent hypergeometric function. For

convenience let us refer to the distribution in (28) as Type H1 . Then the

distribution of larvae is a generalized Poisson represented by

Poisson v Type H1  (29)

as obtained by Gurland (1958). If in (28) we set a =1, the family (29)

reduces to that of Beall and Rescia ( 1953).

As a further step in extending Neyman's family of distributions the

parameter X in (23) may also be regarded as a random variable. This

is a realistic consideration because different egg-masses would conceivably

be associated with different probabilities of survival. If we assume a Gamma

distribution for X , then (23) becomes a Pascal distribution with p. g. f. ,

say, (q, - plz) . Treating p in (Z4) as a random variable as before,

the distribution of larvae becomes a generalized Poisson with p. g. f.

X 1[g(z)- 1]
e
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where

2 (Z) fB I x a-,() - kXPl 1  = 2 FF{kI, a, a+ 3, pl(z-l)} . (30)gz~~z) s~,I)o[-PiX(z -1)]

If, for convenience, we refer to the distribution corresponding to g 2 z) as

Type H 2' then the distribution of larvae may be represented by

Poisson v Type H 2 " (31)

If, in addition to the above compounding we also allow the parameter

XI in (22) to follow a Gamma distribution, the distribution of egg-masses

becomes a Pascal. In analogy with (29) and (31) we obtain two more families

of distributions represented by

Pascal v Type H (32)

Pascal v Type H 2  (33)

respectively.

As some of these general families contain many parameters and are not

particularly simple to work with it would be interesting to examine their

characteristics in the hope of finding simpler families which might be

similar in shape. Some results along these lines are considered in
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section 5

5. Skewness and kurtosis of some families of distributions

Among the usual characteristics of interest in assessing the shape

of a distribution are the skewness and kurtosis. These are measured by

3. //2, 2 , respectively, where it , 1&3 ' N are central moments

of the orders indicated by the subscripts. To standardize the distributions

under comparison in some reasonable sense, we have reparametrized them

to have the same mean kp and the same variance kp(l + p) as the Negative

Binomial. This is suggested by a similar comparison made by Anscombe (1950)

in the case of a few two-parameter families of distributions he compared with

the Negative Binomial.

As measures of skewness and kurtosis we have also employed the

same quantities K( 3 )/kp 3  K(4 )/kp4 as Anscombe (op. cit.), where

K and K are the third and fourth factorial cumulants. For the
(3) (4)

distributions we have considered these measures are particularly convenient

both from the standpoint of calculation and from the fact the final measures

obtained do not involve the parameters k, p .

A note of caution should be made, however, in the use of the above

quantities as measures of skewness and kurtosis. Since
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L = K (3+ a function involving only the first two moments

4= K(4) + 6K(3) + a function involving only the first two moments

and the first two moments of all the distributions under comparison are the

3 4V same it follows that when K (3) /kp and K( 4 ) /kp are both increasing or

both decreasing then the distributions can, in fact, be ordered according to

skewness and kurtosis. For all the two-parameter families appearing in

Table 1 this is actually the case. For those families containing more than

two parameters and involving the Type HI or Type H 2 distributions there

* are some values of the parameters for which the above quantities involving

factorial cumulants increase or decrease in opposite directions. The interval

between minimum and maximum values, however, is of some value in the

comparison of the shapes of the various distributions in Table 1. Each pair

of numbers in the table enclosed in parentheses indicates such an interval.

As a further explanation of the distributions appearing in Table 1,

the Neyman B and Neyman C are special cases of the family (Z9) with

a = 1 and 1 = 1, 2 respectively in (27). The Polya-Aeppli distribution is

also a special case of the above family with a = 1 and p = •. (cf. Gurland

(1958)). The Polya-Aeppli distribution can also be defined formally as a special

case of the Poisson v Pascal with p. g. f. e)[ (q-pz)-I]
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TABLE 1

Measure of skewness and kurtosis for some distributions with the same
first two moments kp, kp(l + p)

Distribution (3) (4)S3 4
kp kp

Poisson v Binomial (O, 1) (0, 1)

Neyman A 1 1

Neyman B 9/8 27/20

Neyman C 6/5 8/5

Polya-Aeppli 3/2 3

Pascal 2 6

Pascal A Gamma (1.75, 2) (4.373, 6)

Poisson v Pascal (1, 2) (1, 6)
0I

Pascal v Poisson (1, 2) (1, 6)

Pascal v Pascal (1, 2) (1, 6)

Poisson v H1  (1, 2) (1, 6)

Pascal v H1 (1, 2) (1, 6)

Poisson v H 2 (1, 4) (1, 36)
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It is apparent from Table 1 that for all the two-parameter families

under consideration the skewness and kurtosis are both increasing. From the

Neyman A on through to the Pascal there is a range (1, 2) for the skewness

measure and a range (1, 6) for the kurtosis measure. It is particularly

interesting that for the Poisson v Pascal, Pascal v Poisson, Pascal v Pascal,

Pois son v H 1 , and Pascal v H the range between minimum and maximum

for the skewness measure is also (1, 2) and for the kurtosis measure is also

(1, 6). Note that the Poisson v Pascal and Pascal v Poisson are three-parameter

families whereas the Pascal v Pascal, Poisson v H involve four parameters,

the Pascal v HI , Poisson v H 2 involve five parameters.

As the Poisson v Pascal and Pascal v Poisson are simpler families than

those involving more parameters their flexibility of shape is a recommendation

in favor of their use. Of these two distributions the Poisson v Pascal lends

itself to simpler computation of the probabilities and extimation of the

parameters required in the fitting of the distribution to observed data.

It is also evident from Table I that the Poisson v Binomial covers the

range of skewness (0, 1) and the range of kurtosis (0, 1). As the corresponding

ranges for the Poisson v Pascal are (1, 2) and (1, 6) , this shows that these

relatively simple three-parameter families, the Poisson v Binomial and the

Poisson v Pascal cover a wide range of possible shapes. Methods of

estimating the parameters and computing the probabilities in these distributions

appear in a number of recent papers. Shumway and Gurland (1960), (1961),

Katti and Gurland (1961), (1962 a)
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6. Considerations in the choice of a family of contagious distributions

From the preceding sections it is evident that many forms of compound

and generalized distributions are possible. As some of these distributions are

simpler than others, yet are meaningful biologically and do not suffer seriously

in loss of flexibility, the following three criteria might be suggested as

important in the choice of an appropriate family

(i) Simplicity

(ii) Flexibility

(iii) Meaningful parameters

The Negative Binomial is one of the most widely used discrete

distributions because it is relatively simple and is very convenient

computationally although the estimation of the parameters is rather tedious

if the method of maximum likelihood is employed (cf. Fisher(1953) Bliss (1953)).

The Neyman Type A distribution, a two-parameter family, is also widely

used (cf. Beall(1940) Evans (1953))but it is not as convenient in computing

probabilities as is the Negative Binomial. Methods have been devised for

simplifying these computations (cf. Douglas (1955)).The estimation of the

parameters by maximum likelihood is also tedious, but alternative methods

which are simpler and retain high efficiency have been suggested both for the

Negative Binomial and the Neyman Type A *by Katti and Gurland (1962 b).
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If none of the relatively simple distributions such as the Poisson,

Negative Binomial, Neyman Type A is appropriate then one of the the three-

parameter families suggested in section 5 might be utilized. On the basis

of only a few isolated experiments it is, of course, not possible to distinguish

effectively between competing distributions; in which case the simpler ones,

if they provide a good fit, are to be preferred. On the other hand, if many

experiments are carried out in the same classes of situations, and if there

is ample evidence that nrone of the simple distributions is appropriate, then

a more flexible distribution such as the Poisson v Pascal, say, might be tried.

The Poisson v Pascal affords an attractive alternative because it is also

relatively simple (almost as easy to work with as the Neyman Type A) and

because it subsumes the Negative Binomial, the Neyman Type A, and the

Poisson as limiting cases (cf. Katti and Gurland (1961)). Specifically, let

a Poisson v Pascal have p. g. f. g(z) = eX [ (q-pz) -k-] . Table 2 gives

the limiting form of g( z) for different passages to the limit.

TABLE 2

Some limiting forms of the Poisson v Pascal distribution

No. Limits taken Limiting p. g. f. Name of limiting distribution

k-.'oo, p-bO Xe (Z-l)-l
X[e -1] Neyman Type A

pk = X

k .. k-• 0, 1 X -*. 0o-

SZ k(q- pz) Negative Binomial
Xk =k1

p -0 O, X -.0 0o X1(zl)
3 e Poisson

Xkp = X
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Some methods for simplifying the computation of the probabilities

and for obtaining the maximum likelihood estimates of the parameters in a

Poisson v Pascal distribution are given by Shumway and Gurland (1961).

Estimation of the parameters in this distribution by the technique of minimum

chi-square is considered by Katti and Gurland (1961). In Table 3, taken from

this paper, we see the results of fitting a Poisson v Pascal and a Polya-Aeppli

to some data of Beall and Rescia (1953).

TABLE 3

Fit of the observed frequency of Lespedeza Capitata
from Table V of Beall-Rescia (1953)

Expected frequency due
Observed to Poisson v Pascal Expected frequency as

Plants Frequency (Method of moments) in Beall-Rescia (1953)

0 7178 7185.0 7217.6

1 286 276.0 218.6

2 93 94.5 105.5

3 40 41.5 50.9

4 24 20.2 24.5

5 7 10.4 11.8

6 5 5.6 5.7

7 1 3.1 2.8

8 2 1.7 1.3

9 ,, 1 1.0 .6

10 2 .6 .3

11+ 1 .3 .4

2 9.58 42.97

Degrees of freedom 8 9
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Poisson v Pascal definitely provides a much closer fit. This is not

surprising because of the much greater flexibility of the Poisson v Pascal.

4[ For a lower range of skewness and kurtosis the information in

Table 1 suggest the use of the Poisson v Binomial distribution. From
n

the form of its p.g.f. g(z) = ek[( + pz)n-] it is evident this

distribution converges rather quickly to the Neyman Type A distribution

as n - co, p - 0 with np constant. For small values of n, however,

it may be quite useful, and has been applied by Mc Guire et al. (1956)

and Sprott(1958).

TABLE 4

Fit of the observed frequency of Pyrausta Nubilalis
from Distribution 6 of Mc Guire et al. (1957)

Observed Expected frequency due to Expected frequency due to
Corn Borers Frequency Poisson v Binomial (n = 2) Poisson v Binomial (n = 3)

0 907 906. 18 907.66

1 275 276.69 277.24

2 88 89.92 86.50

3 23 18. 86 20. 14

4 3 4.35 3.23

2
X 1.39 0.47

Degrees of
freedom 2 2
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In Table 4 are shown the results of fitting a Poisson V Binomial to

some data of Mc Guire et al. (1957) by the method of maximum likelihood.

This table is partially reproduced from Shumway and Gurland (1961). It is

quite evident that a good fit is provided in the case n = 2 and an even better

fit in the case n =3. Techniques for estf r ating the parameters of a Poisson

v Binomial based on minimum chi-square have been developed by Katti and

Gurland (1962 a).

7. Conclusion

One might ask what is the purpose of fitting data by discrete

distributions such as those considered here. Apropos of this question it

is interesting that in the application of most standard statistical techniques

based on the Normal distribution a test of fit is not usually performed. This

may be due to a wide experience of a good fit by the Normal distribution or

to the property of nDbustness (cf. Box and Anderson (1955)) enjoyed by many

tests which are based on a Normal population but in applying which the data

is actually from a non-Normal population.

In the case of data from a discrete distribution many underlying forms

are possible and the fittings based on these forms may be quite different. A

knowledge of the underlying distribution makes it at least theoretically

possible to construct tests and estimate parameters for the purpose of

making statistical inference.
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It is also important for the distributions fitted to biological data

to be based on models which have a reasonable biological meaning. The

Scompound and generalized distributions, including the Negative Binomial,

SNeyman Type A, Poisson v Pascal, and many others, afford interesting

possibilities of such distributions, because they provide a simple

mechanism for explaining the "clumpiness" which is so characteristic

of much biological data.
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